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Abstract
We study the �-product of Bracken [1], which is the Weyl quantized version
of the pointwise product of functions in phase space. We prove that it is not
compatible with the algebras of finite rank and Hilbert–Schmidt operators. By
solving the linearization problem for the special Hermite functions, we are able
to express the �-product in terms of the component operators, mediated by
the linearization coefficients. This is applied to finite rank operators and their
matrices, and operators whose symbols are radial and angular distributions.

PACS numbers: 03.65.−w, 45.20.−d, 03.65.Sq, 03.65.Ta

1. Introduction

1.1. Quantization

In an effort to understand Schrödinger’s formulation of quantum mechanics3, Weyl constructed
a general correspondence between functions on phase space and operators on Hilbert space
[3]. The essence of Weyl’s construction is the association

ei(ap+bq) −→ ei(aP +bQ) (1.1a)

which we may extend by integration: for ‘good enough’ functions F(a, b)

2πT (p, q) �→
∫

R
2
F(a, b) ei(aP +bQ) da db. (1.1b)

Here T is the Fourier transform of F, and Q,P are the position and momentum operators,
respectively.

This is written for the simplest Schrödinger system: one degree of freedom with no
constraints, and this is the only system considered in this paper, though there is no obstruction
to considering unconstrained systems with several degrees of freedom.

The phase space of this system, that is, its set of allowed classical momenta and positions, is
R

2, but in order to emphasize the physical interpretation, we denote it by �. Our convention is

3 We take it for granted that the reader is familiar with the Schrödinger representation on L2(R).
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to take the first coordinate to be the momentum, the second to be the position: (p, q) ∈ �. That
this is the correct physical interpretation of the Weyl correspondence is shown by considering
T (p, q) = f (p), in which case f (P ) results, and similarly for functions of q alone.

The quantization correspondence above comes without a class of functions T being
specified, and for purposes of rigour a choice must be made. As we are mapping functions
in phase space to operators on Hilbert space, and these operators can well be unbounded,
the choice of phase space functions and the choice of smoothness for wavefunctions must be
made simultaneously. It turns out that a mathematically convenient choice is to choose the
‘functions’ in phase space to be tempered distributions T ∈ S ′(�), the test function space
S(R) as the common domain of the operators, and the space L(S(R),S ′(R)) of continuous
mappings from this domain into the tempered distributions in S ′(R). Thus we are working in
the rigged Hilbert space model for this system, based on the triple

S(R) ⊂ L2(R) ⊂ S ′(R). (1.2)

All these spaces are taken to be equipped with their usual topologies, but we will be making
use of this only implicitly, through references to continuity. In addition, we refer to elements
of S(R) and S(�) as test functions, and those of their duals as distributions, although strictly
speaking this is an abuse of terminology.

We now outline the version of quantization that follows from these choices4. All of our
notation and conventions concerning quantization and distributions are taken from our book
[3], [DHS] hereafter.

Quantization [2] sets up a bicontinuous linear correspondence between tempered
distributions in phase space and continuous linear mappings from S(R) to S ′(R) as generalized
quantum observables on the rigged Hilbert space. We write ∆[T ] for the generalized
observable obtained by quantization of the distribution T; conversely, every observable
X ∈ L(S(R),S ′(R)) is the quantization of a unique distribution ∆−1(X) = T in S ′(�),
such that ∆[T ] = X. We call T the symbol of X and X the quantization of T.

Equation (1.1b) suffers from the defect that it requires the Fourier transform F of the
phase space distribution T which is the physically more immediate quantity. This can be
overcome by taking its Fourier transform, at least formally, and then using the result to obtain
the mathematically rigorous correspondence we need.

For this we need the Fourier transform of W(a, b) = exp i(aP + bQ). This can be
obtained by a Bochner integral, but it is simpler to start with the result.

For every (p, q) ∈ �, consider the bounded operator ∆[p, q] on L2(R) given by

(∆[p, q]f )(x) = 2 e2ip(x−q)f (2q − x). (1.3)

For T regular enough (a test function for example), ∆[T ] can be given formally by the rule

∆[T ] = 1

2π

∫
�

T (p, q)∆[p, q] dA (1.4)

where dA = dp dq is the Lebesgue measure on phase space, and this is a Bochner integral.
As noted above, rather than justify this directly, we are going to employ a procedure similar
to the method of defining unbounded operators by quadratic forms.

Staying with sufficiently regular T for now, substitute (1.4) into the matrix element
〈ḡ,∆[T ]f 〉. In our rigged Hilbert space formalism, f, g ∈ S(R); the complex conjugation
on the g is designed to convert certain sesquilinear expressions to complex bilinear ones. Now

4 As only quantization in the sense of Weyl is considered in this paper, the term quantization is unambiguous. There
is no difficulty in considering other schemes, such as P- or Q-ordering, but we will not do so here.



The pointwise product in Weyl quantization 6695

exchange the orders of integration over � and R (which we are not attempting to justify). The
result is an integral of the form∫

�

T (p, q)[G(ḡ ⊗ f )](p, q) dA

where, for fixed f, g ∈ S(R),G(ḡ ⊗ f ) is a test function on phase space.
Examination of G(ḡ ⊗ f ) shows that G can be linearly and continuously extended to an

invertible and bicontinuous mapping of S(R2) onto S(�). We emphasize that the domain of
G is a result of our restricting the ‘wavefunctions’ f and g to be test functions. If, however, it
is necessary for f and g to be arbitrary vectors in L2(R) for some purpose, the formula for G
will extend to that, and G(ḡ ⊗ f ) will then belong to L2(�).

We call G the Wigner transform5:

G(F )(p, q) = 1

2π

∫
R

F(q + u/2, q − u/2) eipu du F ∈ S(R2). (1.5)

It is then possible to define ∆[T ] ∈ L(S(R),S ′(R)) for all T ∈ S ′(�) by

[[∆[T ]f, g]] = [[T ,G(g ⊗ f )]] f, g ∈ S(R) (1.6)

where we are now using the duality pairings6 between S(R) and its dual on the left, and
between S(�) and its dual on the right.

1.2. Products

Knowing that every mapping in L(S(R),S ′(R)) is the image under ∆ of a distribution in
phase space, can we design a product for distributions, (S, T ) �→ S ∗ T such that

∆[S � T ] = ∆[S]∆[T ]? (1.7)

Subject to the distributions being regular enough, the answer is yes, and such a product was
first constructed by von Neumann [13], but now invariably called the Moyal product and
attributed to Moyal [5] and in part to Wigner [4]. We shall not need the explicit expression
for the Moyal product, but we note that it is not defined for all pairs of distributions. That is
to say, if S and T are tempered distributions, the formula for S ∗ T will not yield a tempered
distribution in general. The Moyal product has been a successful construction in that it is one
of the principal examples of an algebra deformation, and is important in a proper treatment
of the classical limit: see Landsman [14] for this topic, including references. It is also a
significant technique in the theory of pseudo-differential operators and applications to the
theory of partial differential equations (most usually in the variant introduced by Kohn and
Nirenberg [15]), see Hörmander for example [16].

Recently, Bracken has suggested considering the reverse problem, imposing a product
on operators whose symbol is the pointwise product of distributions [1]. Just as for the
Moyal product, it is not possible to define the pointwise product of all pairs of (tempered)
distributions. The best known example is that the square of Dirac’s delta function cannot be
defined in any reasonable way, a result of Schwartz [17]. In consequence, introduction of this
new product of operators must be accompanied by a discussion of pointwise multiplication of
distributions.

First we must say what we mean by multiplying distributions—when it is possible. The
product must have at least these properties: it is commutative, bilinear and for three or more,

5 This is not a standard name. We trust that there will be no confusion with the notion of the Wigner function of a
state, which is the symbol of the associated density matrix. We will have no need of Wigner functions here, nor of
any quasi-probabilities associated with them.
6 The symbol [[· , ·]] is the generic pairing symbol between a topological vector space and its dual.
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associative; and if at least one of the factors is a test function, it must reduce to the known
product S(�) × S ′(�) → S ′(�),

[[f T , g]] = [[Tf, g]] = [[T , fg]] f, g ∈ S(R2) T ∈ S ′(�). (1.8)

What is known about extending this product in individual cases is incomplete. In the first
place, tempered distributions may be partitioned into two classes, regular and singular. A
regular (tempered) distribution is one defined by a polynomially bounded measurable function
(which is necessarily locally integrable). If f is such a function, it defines a distribution in the
obvious way7:

[[f, g]] =
∫

�

f (p, q)g(p, q) dA g ∈ S(�). (1.9)

The delta function is not regular in this sense. This is shown, for example, by Gelfand and
Shilov [18] (who consider distributions in a wider sense when discussing regularity). Regular
distributions have the property that they form an algebra under the pointwise product.

But these are distributions defined by functions. What of singular distributions? The
principle that must apply is obvious intuitively, and Vladimirov [19] puts it like this: “To
define the product of generalized functions f and g, they must have the following properties:
insofar as f is nonregular in the neighbourhood of an arbitrary point, so must g be regular
in this neighbourhood. For example, δ(x − a)δ(x − b) = 0 if a �= b.” Microlocal analysis
provides at least a sufficient condition for the product of two distributions in D′(Rn) with a
common singularity, in terms of their wavefront sets, for example Hörmander [16], theorem
8.2.10. However, this condition, or its variants, does not apply to the product of a distribution
with itself, nor is it specific to tempered distributions. Since what we want is to identify
algebras of tempered distributions under the pointwise product, what is known is insufficient.
Bearing in mind Vladimirov’s statement, if we are demanding an algebra, then it seems as
though it cannot contain any distribution with nonregular points, since its behaviour at such
points will not only not be damped by multiplication with itself any (finite) number of times,
it will usually be made worse. Although we have not proved this, it follows that such an
algebra must contain only regular distributions. If so, the algebra of polynomially bounded
measurable functions is the largest such. We intend to consider this problem in detail at a later
time. In this paper we will assume only that we may choose pairs of tempered distributions
which do have a well-defined product in S ′(�). We call such pairs multipliable.

Thus, if S, T ∈ S ′(�) are multipliable, then for all f ∈ S(�),

[[ST , f ]] = [[T S, f ]] (1.10)

is well defined. When S and T are regular, there is no problem with setting8

(ST )(p, q) = S(p, q)T (p, q). (1.11)

Equation (1.10) allows us to write Bracken’s suggestion as

∆[S] � ∆[T ] = ∆[ST ] (1.12)

defining a new distributive, associative and commutative operator product, indicated by the
symbol �.

In order to consider the phase space multiplication ST in a duality pairing directly, we
use the Wigner transform to give the following definition:

7 We are considering distributions on �, but could equally well consider this problem on R
d , even for d = 1.

8 If it is true that the largest algebra of multipliable distributions is the set of polynomially bounded measurable
functions, this equation is true for all pairs in that algebra.
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Definition 1. For any pair S, T , of multipliable distributions, the �-product of their
quantizations is the mapping ∆[S] � ∆[T ] ∈ L(S(R),S ′(R)) given by

[[∆[S] � ∆[T ]f, g]] = [[∆[ST ]f, g]] (1.13a)

= [[ST ,G(g ⊗ f )]] f, g ∈ S(R). (1.13b)

Bracken found the formula for the kernel of ∆[S]�∆[T ] and then considered the role of
h̄ as an expansion parameter. One of his concerns was to see, in some sense, how the classical
mechanical formalism, transported to Hilbert space by Weyl quantization and the �-product,
is related to the usual operator (quantum mechanical) product, particularly as h̄ → 0.

Our concerns here are different. We wish to investigate how the �-product conforms to
the usual classes of operators. To begin with, we want to consider how the finite rank and
Hilbert–Schmidt operators behave under the new product.

Proposition 2. The class of finite rank operators on L2(R) is not closed under the �-product;
neither is the class of Hilbert–Schmidt operators.

Proof. It is standard that an operator on L2(R) is Hilbert–Schmidt class if and only if its symbol
belongs to L2(�). As L2(�) is not closed under the pointwise product, the Hilbert–Schmidt
operators are not closed under the �-product.

The proof for the finite rank operators will be given in section 5. �

Given two distributions with compact support, we will show that they can be multiplied
together if their supports are disjoint.

Proposition 3. Let S, T be tempered distributions of compact supports, and suppose their
supports are disjoint. Then S and T are multipliable, with ST = 0, the zero distribution.
Consequently

∆[S] � ∆[T ] = 0. (1.14)

Proof. Let S, T ∈ S ′(�) be distributions of disjoint and compact support. We can find a
sequence (Tn) of test functions converging in S ′(�) to T such that the supports of the Tn are
nested and decreasing to the support of T and, moreover, none of these supports meets that
of S. Then for each n and all f ∈ S(�), Tnf ∈ S(�) is a test function whose support is no
larger than that of Tn. Therefore [[S, Tnf ]] = 0 for all n, and so

lim
n→∞ [[STn, f ]] = lim

n→∞ [[S, Tnf ]] = 0

for all test functions f . Hence (STn) converges to the zero distribution in S ′(�). �

Whatever results hold for other familiar classes of operators (bounded, positive, compact,
trace class, . . .) will require detailed analysis. The difficulty is that, as with the theory of
integral kernels, there are no useful necessary and sufficient conditions for distributions T in
order that ∆[T ] be of one of these classes.

Another concern of ours is calculational. By introducing a certain orthonormal basis into
the rigged triple, the special Hermite functions described below, a number of properties of the
�-product are made explicit.
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2. Marginals, polynomials and the Weyl group

In the language of Weyl quantization theory, marginals refers to the quantization of functions
of p alone or of q alone.

Simple and well-known considerations tell us that for distributions on phase space
depending on p alone, their pointwise and Moyal products, if defined, coincide; similarly
for distributions of q alone. Hence, for all integers m, n � 0,

P m � P n = P mP n = P m+n (2.1a)

Qm � Qn = QmQn = Qm+n. (2.1b)

In particular,

I � I = I. (2.1c)

But the equality of the Moyal and pointwise products, when they both exist, does not hold
for distributions depending non-trivially on both p and q, of course. For general polynomials
on phase space, the basic formulae were found by Bracken [1], in terms of the so-called
Weyl-ordered polynomials. We will content ourselves with giving the �-product of the Weyl
group. The result for any polynomial follows from this by differentiating with respect to the
group parameters and linearity. (We note in passing that the set of all polynomials is an algebra
of tempered distributions closed under the pointwise product.)

We assume that the properties of the Weyl operators W(a, b) are known. In particular

1. that the canonical commutation rules are

W(a, b)W(c, d) = ei(ad−bc)/2W(a + c, b + d) (2.2)

2. that equation (1.1a) can now be written as ∆[E(a,b)] = W(a, b), where, for all
(a, b) ∈ R

2, E(a,b)(p, q) = ei(ap+bq) and
3. that we may ‘integrate’ W(a, b) against tempered distributions (the justification is

applying the Fourier map to equation (1.6) using the distributional form of the Fourier–
Plancherel theorem).

Proposition 4. For all (a, b), (c, d) ∈ R
2,

W(a, b) � W(c, d) = W(a + c, b + d) (2.3a)

and if S and T are distributions whose (ordinary, not twisted) convolution S ∗ T is a distribution,

W [S] � W [T ] = 2πW [S ∗ T ]. (2.3b)

Proof. Applying ∆ to the pointwise product E(a,b)E(c,d) = E(a+c,b+d) yields equation (2.3a).
Equation (2.3b) then follows by integrating against S(a, b)T (c, d) under the stipulated
conditions. �

Of course S ∗ T is well defined precisely when F−1(S) and F−1(T ) are multipliable.
Comparing equation (2.3a) with the canonical commutation relations, we see that for the

�-product the symplectic phase factor does not appear. If we reintroduce Planck’s constant,
the argument of that phase factor is ih̄(ad − bc)/2, which vanishes with h̄. A possible
interpretation of this is given by Bracken [1], but it seems to us that this matter needs further
consideration, particularly its geometric aspects.
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3. Special Hermite functions

As their name implies, the special Hermite functions are related to the Hermite–Gauss
functions, otherwise known as the oscillator eigenfunctions. Our conventions for the Hermite–
Gauss functions are as follows9.

First of all we write hk for the kth Hermite–Gauss function rather than using Dirac’s
ket notation |k〉. Our conventions concerning these functions are implicit in their generating
function:

Gt(x) =
∞∑

k=0

t k√
2kk!

hk(x) = π−1/2 exp(−t2/4 + xt − x2/2). (3.1)

We will not need any further details here, but in any event we expect that the reader knows these
functions very well. What might not be so well-known is that besides being an orthonormal
basis for L2(R), each hk is a test function. Moreover, the set of Hermite–Gauss functions
constitutes a Schauder basis for both S(R) and S ′(R) (identifying the distribution with the
function that defines it). In the unique expansion of test functions with respect to this basis, the
coefficient sequences are rapidly decreasing, whilst for distributions they are of polynomial
growth.

Associated with the Hermite–Gauss functions are the operators Pm,n for all integers
m, n � 0:

Pm,nf = 〈hn, f 〉hm f ∈ S(R) m, n � 0 (3.2a)

sometimes written as |m〉〈n|. Certain properties of the Hermite–Gauss functions can be
transferred to the Pm,n. Orthonormality results in the cancellation law

Pm,nPj,k = δn,jPm,k. (3.2b)

Note that the Pn,n are orthogonal projection operators. Completeness is equivalent to the
decomposition of the identity operator:

∞∑
n=0

Pn,n = I. (3.2c)

Further details concerning the Hermite–Gauss functions can be found in most quantum
mechanics textbooks.

We now turn to the special Hermite functions {fm,n : m, n � 0}. These may be defined
through

Ps,t (p, q) = 2 exp{−p2 − q2 + is(p − iq) − it (p + iq) − st/2} (3.3a)

=
∞∑

m,n=0

smtn√
2m+nm!n!

fm,n(p, q) (3.3b)

from which it follows that, for all integers m, n � 0,

fm,n(r, β) = (−1)µ im−n21+δ/2

√
µ!

M!
e−r2

rδ ei(n−m)βLδ
µ(2r2). (3.3c)

Here and elsewhere, for each pair of positive integers (m, n) we write µ = min{m, n},M =
max{m, n} and δ = |m − n| = M − µ. In this formula, (r, β) are the polar coordinates in
phase space, defined by p + iq = r exp iβ. There is clearly an indeterminacy in the definition

9 We distinguish the Hermite polynomials as such from the Hermite polynomials multiplied by the Gaussian by
calling the latter the Hermite–Gauss functions.
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of β, which will be discussed below, but this is of no significance for the above formula. It
will be noticed that, in spite of their name, the special Hermite functions are really Laguerre
functions.

The special Hermite functions are test functions, fm,n ∈ S(�), and form an orthogonal,
but not normalized, basis for L2(�):

〈fm,n,fj,k〉 =
∫

�

fm,n(p, q)fj,k(p, q) dp dq = 2πδm,j δn,k. (3.4)

In close analogy with the Hermite–Gauss functions, they also form a Schauder basis for the
test functions S(�) and for the phase space distributions S ′(�). There is a certain clarity in
distinguishing fm,n as a test function from its identification as a distribution, which we write
Um,n ∈ S ′(�). It is worth noting that, as this is a distribution defined by a test function,
expressions such as Uj,k(p, q)Um,n(p, q) are well defined, with the function Uj,kUm,n itself
a (distribution defined by a) test function. For details of this part of the theory, involving the
antilinear embedding of S(�) densely into S ′(�), see [DHS].

More concretely, the basis property means that if F ∈ S(�), we have the expansion

F =
∞∑

m,n=0

cm,nfm,n cm,n = 〈fm,n, F 〉 (3.5a)

with the unique expansion sequence (cm,n) rapidly decreasing in both indices. Similarly, if
T ∈ S ′(�),

T =
∞∑

m,n=0

τm,nUm,n τm,n = 1

2π
[[T ,fm,n]] (3.5b)

where (τm,n) is polynomially bounded in both indices. The 2π is a consequence of the lack of
normalization, as seen from

[[Um,n,fj,k]] = 2πδm,j δn,k. (3.5c)

Implicit in these formulae is that the expansion for F converges in the Fréchet topology on
S(�) and the expansion for T converges in the strong dual (DF-) topology.

One might wonder where the special Hermite functions come from in the first place. They
arise from the identity

fm,n = 2πG(hm ⊗ hn). (3.6)

It then follows immediately from (3.5c) and (3.6) that

∆[Um,n] = Pm,n (3.7)

which is the principal reason for the utility of the special Hermite functions in quantization.
Apply ∆ to (3.5b). As the series converges in the DF topology, it is justified to interchange

∆ and the summation. Using (3.7) then leads to the quantization formula for any tempered
distribution T in terms of Hermite–Gauss functions:

∆[T ] =
∞∑

m,n=0

τm,nPm,n. (3.8)
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4. The �-product in terms of special Hermite functions

Having introduced the special Hermite basis and seen its intimate connection with Weyl
quantization, we now want to use it in connection with the �-product. This requires us to
discover how to expand a product ST of distributions in terms of special Hermite functions.
We can do this (by linearity and continuity) if we first learn how to expand a product Uj,kUm,n

as an infinite linear combination of special Hermite functions, which is known in the theory
of orthogonal polynomials as the problem of linearization [6].

In detail, we seek the complex numbers {m1,m2,m3 | n1, n2, n3} satisfying

Un1,m1Un2,m2 =
∞∑

m3,n3=0

{m1,m2,m3 | n1, n2, n3} Un3,m3 . (4.1)

(We shall call these the SH coefficients.) Remembering that the Um,n are test functions, we
can write this in terms of function values:

fm1,n1(p, q)fm2,n2(p, q) =
∞∑

m3,n3=0

{m1,m2,m3 | n1, n2, n3}fm3,n3(p, q). (4.2)

As fm1,n1 ,fm2,n2 ∈ S(�), this series is convergent in the topology of S(�). All we ever use,
however, is the weaker condition that it converges in S ′(�).

Using the orthogonality, the SH coefficients are given by the integral expression

{m1,m2,m3 | n1, n2, n3} = 1

2π

∫
�

fm1,n1(p, q)fm2,n2(p, q)fm3,n3(p, q) dp dq. (4.3)

As we were not able to find the solution for the SH coefficients in the literature, we have
provided one in the appendix: it may be that this result is of independent interest.

Suppose that we have solved this problem. For any multipliable distributions R, S with
expansion coefficient sequences (ρm,n) and (σm,n), respectively, we have the DF-convergent
expansion

RS =
∞∑

m,n=0

τm,nUm,n (4.4a)

with

τm3,n3 =
∞∑

m1,...,n2=0

{m1,m2,m3 | n1, n2, n3} ρm1,n1σm2,n2 . (4.4b)

Note that from the multipliability hypothesis it follows that this series converges absolutely
and that (τm,n) is a polynomially bounded sequence.

We can also apply our solution to the �-product, which is why we considered this
calculation in the first place.

Since ∆[Um,n] = Pm,n it is now immediate that

Pn1,m1 � Pn2,m2 =
∞∑

m3,n3=0

{m1,m2,m3 | n1, n2, n3} Pn3,m3 (4.5a)

and, for multipliable distributions R, S (note the index order),

∆[R] � ∆[S] =
∞∑

m1,...,n3=0

{m1,m2,m3 | n1, n2, n3} ρn1,m1σn2,m2Pn3,m3 . (4.5b)

This series, which converges in the topology of S ′(�), gives the �-product in terms of
quantities that are, in principle, known.

Further details concerning special Hermite functions may be found in [DHS], Folland
[11] and Thangavelu [12].
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5. Finite rank operators and matrices

By definition, a finite rank operator on L2(R) is a linear operator whose range is a finite-
dimensional (hence closed) linear subspace M. Suppose, in particular, that M is one
dimensional, spanned by the normalized vector f . Then if g is any nonzero vector in L2(R),
the operator |f 〉〈g| has range M, and so this gives us the most general form of a rank 1
operator10:

(|f 〉〈g|)h = 〈g, h〉f h ∈ L2(R). (5.1)

If the dimension of M is N, by choosing an orthonormal basis for it, any operator whose range
is M can be written as a sum of N operators of rank 1. In this way, the �-product of finite
rank operators can be reduced to sums of the �-product of rank 1 operators:

|g〉〈f | � |u〉〈v|. (5.2)

The simplest way to evaluate this (and the only way that we know) is to expand all the functions
in terms of Hermite–Gauss functions. For one finite rank operator we have

|g〉〈f | =
∞∑

m,n=0

〈hm, g〉〈f, hn〉Pm,n. (5.3)

(The hypothesis is that we know f and g, and so, in principle, we know the expansion
coefficients which, note, are expressed in terms of inner products and not duality pairings.)
Substituting into equation (5.2) yields the general result in terms of known quantities:

Proposition 5. For f, g, u, v ∈ S(R),

|g〉〈f | � |v〉〈u| =
∑
m,n

{n | m} [〈
hm1 , g

〉〈
f, hn1

〉〈
hm2 , v

〉〈
u, hn2

〉]
Pm3,n3 . (5.4)

We have introduced a vector notation for the indices here, with m = (m1,m2,m3),n =
(n1, n2, n3), and the sum is over the full range {0, 1, 2, . . .} for each index.

From this result we can deduce the �-product of any pair of finite rank operators by
linearity.

We now know the �-product of finite rank operators. As we prove in corollary 14 in the
appendix, none of the SH coefficients vanish, so it follows that the product of two finite rank
operators is no longer of finite rank. Hence this class, the simplest of the standard operator
classes, is not closed under the �-product.

Corollary 6. The �-product of any pair of finite rank operators is not of finite rank. In
particular, equation (A.12) yields

P0,0 � P0,0 = 4
∞∑

m=0

(
−1

3

)m+1

Pm,m. (5.5)

Note that this result does not depend on our choice of basis: an operator is either of finite
rank or not.

An associated question is whether there is a matrix version of the �-product, and if so,
whether it is a product that is known. (Aside from the usual matrix multiplication, there is
the product (am,n)(bm,n) = (am,nbm,n), for instance.) As with all questions relating operators
to matrices, the matrix representation depends on the choice of basis in domain and range.

10 For rank 1 operators the Dirac notation seems the most useful. Otherwise one may use tensor products.
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The only result we have in this regard uses the special Hermite basis for both, and is negative
insofar as the resulting product seems new.

With these choices of basis, P0,0 has the matrix representation
1 0 0 . . .

0 0 0 . . .

0 0 0 . . .

...
...

... . . .


and equation (5.5) takes the following matrix form:

1 0 0 . . .

0 0 0 . . .

0 0 0 . . .

...
...

... . . .

 �


1 0 0 . . .

0 0 0 . . .

0 0 0 . . .

...
...

... . . .

 = −4

3


1 0 0 . . .

0 − 1
3 0 . . .

0 0 1
9 . . .

...
...

... . . .

 (5.6)

which is certainly a peculiar result.
For the �-product of infinite matrices in general we can obtain only partial results in

this manner. The reason is that we only know the �-product in terms of symbols and their
quantizations. Using the Hermite–Gauss basis in domain and codomain, the only matrices
obtained in this way have rows and columns which are polynomially bounded sequences, and
this does not exhaust the set of all infinite matrices.

Conversely, not every infinite matrix represents an operator, even if we can choose the
basis at will. As Halmos tells us, it is difficult to tell which matrices do represent operators [8].
A further complication, present even in finite dimensions, is that a given linear transformation
is represented by a generally different matrix with every change of basis in the domain and
the codomain. (As anyone who has whiled away time calculating matrices of transition will
remember.) What we can say is the following.

Proposition 7. Let R and S be multipliable distributions. Using the special Hermite
expansions, the operators ∆[R] and ∆[S] are represented by the matrices (ρm,n) and (σm,n),
with ρi,j = (1/2π)[[R,fi,j ]] and σi,j = (1/2π)[[S,fi,j ]]. The �-product of these matrices is
given by the matrix (τm,n) in equation (4.4b).

6. Products for radial quantization

Polar quantization is concerned with the special cases where the phase space distributions
depend only on the radius or on the angle. We refer to [DHS] for a technical description
of such distributions. Polar coordinates are introduced through p + iq = r exp(iβ). We
will discuss the distributional nature of the angle in the next section; the radius function is
r(p, q) =

√
p2 + q2, and the symbol r is reserved for this function.

The radial distributions we consider here are of the form

frad(p, q) = f ◦ r(p, q) = f
(√

p2 + q2
)

where f: R
+ → C is a polynomially bounded continuous function.

The results of quantizing such distributions are as follows:

∆[frad]hn = ρn(f)hn (6.1)
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where

ρn(f) = 1

2π

∫
�

fn,n(r, β)f(r)r dr dβ (6.2)

= (−1)n
∫ ∞

0
f(

√
u) e−uLn(2u) du. (6.3)

Hence ∆[frad] is diagonal: its eigenvectors are the Hermite–Gauss functions and the eigenvalue
corresponding to the eigenvector hn is ρn(f). In terms of the projection operators Pn,n we can
write

∆[frad] =
∞∑

n=0

ρn(f)Pn,n. (6.4)

For all f of the given class, the series converges in the topology of L(S(R),S ′(R)).
If f, g: R

+ → C are polynomially bounded and continuous, so is fg, the pointwise product
in one variable. Consequently the radial distributions we are considering are all pairwise
multipliable, with

(frad)(grad) = (fg)rad. (6.5)

The behaviour of the quantizations of the radial distributions under the �-product is now clear.

Proposition 8. Let f, g : R
+ → C be continuous and polynomially bounded. Then

∆[frad] � ∆[grad] =
∞∑

k=0

ρk(fg)Pk,k (6.6)

with

ρk(fg) =
∞∑

m,n=0

{m, n, k | m, n, k} ρm(f)ρn(g). (6.7)

Of course we do not have to express ρk(fg) in terms of the SH coefficients, though it is a
natural thing to do.

It is similarly natural here to write down the matrix form of equation (6.6), where, as
usual, we use the Hermite–Gauss functions for a basis in the domain and codomain. Then

ρ0(f) 0 0 . . .

0 ρ1(f) 0 . . .

0 0 ρ3(f) . . .

...
...

... . . .

 �


ρ0(g) 0 0 . . .

0 ρ1(g) 0 . . .

0 0 ρ3(g) . . .

...
...

... . . .



=


ρ0(fg) 0 0 . . .

0 ρ1(fg) 0 . . .

0 0 ρ3(fg) . . .

...
...

... . . .

 (6.8)

with the ρk(fg) given by equation (6.7). Thus, the diagonal nature of these matrices is
preserved under the �-product.

By way of an example, let us apply the results to positive integral powers of the radius.
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Proposition 9. Let α, β be positive integers and write rα for the distribution taking values
(p2 + q2)

α/2
and similarly for rβ . Then

∆[rα] � ∆[rβ] = ∆[rα+β]. (6.9)

The corresponding eigenvalues compose in accordance with

ρk(r
α+β) =

∞∑
m,n=0

{m, n, k | m, n, k} ρm(rα)ρn(r
β) (6.10)

where

ρn(r
α) = 2−α/2

min {α,n}∑
j=0

(
α

j

)√
(n + α − j)!

(n − j)!
gn−j,n−j+α. (6.11)

The g-matrix is characteristic of quantization in polar coordinates, appearing in the
integration identity∫ ∞

0
[G(Gs ⊗ Gt)](r cos β, r sin β)r dr = 1

2π

∞∑
m,n=0

im−n

2m+nm!n!
gm,ns

mtn ei(n−m)β (6.12a)

holding for all s, t ∈ R, and with −π < β � π . The g-matrix is rather complicated, and
although we do not need its details here, we include these for the sake of completeness: for
non-negative integers m, n, let m ∧ n be the minimum of the pair and m ∨ n the maximum,
and set

s(m, n) =
{

1/2 if m ∧ n is even

1 if m ∧ n is odd.
(6.12b)

Then

gm,n =
√

m ∨ n

m ∧ n
2|m−n|/2 


(
1
2m ∧ n + s(m, n)

)



(
1
2m ∨ n + s(m, n)

) (6.12c)

where 
 is the gamma function. For the analysis of this matrix, see [DHS].
Combining (6.10) and (6.11) results in a quadratic sum law for the g-matrix:

Corollary 10. For all positive integers j, k and m1,

(j+k)∧m1∑
a=0

(
j + k

a

)√
(m1 + j + k − a)!

(m1 − a)!
gm1−a,m1+j+k−a

=
∞∑

m2,m3=0

{m | m}
j∧m2∑
b=0

k∧m3∑
c=0

(
j

b

)(
k

c

)√(
m2 + j − b

j

)(
m3 + k − c

k

)
× gm2−b,m2+j−bgm3−c,m3+k−c. (6.13)

The significance of this sum law remains to be investigated.
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7. Products for angular quantization

The formulae for the quantization of angular distributions are more complex than those for
radial distributions, with the g-matrix introduced in the previous section playing an important
role. Moreover, the Moyal product of angular distributions is not necessarily an angular
distribution, further complicating the subject. However, for the class of angular distributions
we consider here, any pair is multipliable, and their product is again an angular distribution.
Consequently, the �-product of angular distributions can be obtained fairly simply.

In writing p + iq = r exp(iβ), we must specify the function ϕ that assigns the value β to
each point (p, q) in the plane. This requires us to cut the plane, and we choose to do so along
the negative abscissa ( p-axis). Hence ϕ: � → [−π, π), with

ϕ(p, q) = β. (7.1)

We note that it is continuous everywhere in the cut plane except across the cut.
The class of angular distributions considered in this paper consists of all tempered

distributions of the form

fang = f ◦ ϕ (7.2)

where f: T → C is continuous and bounded; T is the unit circle (which we identify with the
real interval [−π, π) when convenient).

Quantization of fang may be described by specifying its duality pairing with the Hermite–
Gauss functions,

[[∆[fang]hn, hm]] = im−ngm,n f̂m−n (7.3)

where f̂k is the kth Fourier component.
Equivalently,

∆[fang] =
∞∑

m,n=0

im−ngm,n f̂m−nPm,n. (7.4)

Proposition 11. All pairs of angular distributions of the class considered are multipliable,
with

(fang)(hang) = (fh)ang (7.5)

an angular distribution of the same class. Moreover,

∆[fang] � ∆[hang] = ∆[(fh)ang]. (7.6)

On substituting equation (7.4) into this, we obtain the operator-valued quadratic sum rule
∞∑

j,k=0

ij−kgj,k (̂fh)j−kPj,k =
∞∑

m1,...,n3=0

{n | m} in1−m1+n2−m2gm1,n1gm2,n2 f̂n1−m1 ĥn2−m2Pm3,n3 .

(7.7)

By choosing specific functions f and h, this last equation implies a number of different
sum rules for the g-matrix.

For example, choosing f̂k = δk,s and ĥk = δk,t , for s, t ∈ Z, we find that, for all
non-negative r ∈ Z,

gr,r+s+t =
∞∑

m1,m2=0

{m1 + s,m2 + t, r | m1,m2, r + s + t} gm1,m1+sgm2,m2+t . (7.8)
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This is different in kind from the sum rule (6.13) obtained from radial quantization in that here
the sum is over the first two indices; there it is over the last two. We note that if s < 0, the sum
over m1 contributes only from m1 � −s, and similarly for m2 when t < 0. Setting s = t = 0
and using the fact that gr,r = 1, equation (7.8) implies

1 =
∞∑

m1,m2=0

{m1,m2, r | m1,m2, r} . (7.9)

8. Conclusions

We have considered the �-product introduced by Bracken [1], and shown that it is not
compatible with either the finite rank operators or the Hilbert–Schmidt operators. Further
analysis is necessary to draw conclusions for the other familiar operator classes. To do so
will probably require a careful study of the concept of multipliable distributions, including
topological considerations. Once one has a topological algebra of multipliable distributions,
the �-product may be seen as a continuous representation into the space L(S(R),S ′(R)) of
generalized observables.

The principal tool in this paper is the use of the special Hermite functions as a topological
basis for the phase space rigged triple. In particular we have provided a solution to the
linearization problem for these functions, the necessity of which comes from the pointwise
product defining the �-product. This enables us to express the �-product of finite rank
operators, the corresponding matrices, quantized radial distributions and quantized angle
distributions.

Acknowledgments

We would like to thank the anonymous referees for helpful suggestions and comments at the
proof stage of this paper.

Appendix A. Linearization for special Hermite functions

As noted above, the introduction of the special Hermite functions as basis elements on phase
space will afford us a systematic procedure for considering a number of aspects of the
�-problem, but for this to work we must determine the integral of three special Hermite
functions over all of �. We provide the solution in this section. In fact, it is no more difficult
to do so for an arbitrary finite product of d special Hermite functions, so we take the opportunity
to do so.

Notation. Until further notice, then, d will be a fixed positive integer with d � 3. Our goal,
then, is to determine the SH coefficients

{m1,m2, . . . , md | n1, n2, . . . , nd} = 1

2π

∫
�

d∏
k=1

fmk,nk
(p, q) dp dq. (A.1)

It is convenient to use vector notation for the multiple indices, so we write m =
(m1,m2, . . . , md) and similarly for n. This is consistent with their use in the body of
the text, cf equation (5.4). Hence we may write the SH coefficients as {m | n}. We will
also use the notation µk = min {mk, nk},Mk = max {mk, nk} and δk = |mk − nk| for
k = 1, 2, . . . , d. The associated vectors are µ,M and δ. In addition we make use of
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the l1-norm: for a ∈ R
d , |a| = ∑ |ak|. The multi-index notation µ! for µ1! · · · µd ! is also

useful.
We are going to separate the dth special Hermite function from the first d − 1 of them

in doing the calculation, leading to the appearance of vectors in R
d−1 obtained from those of

R
d by striking out the dth component. This will be indicated thus: �a = (a1, . . . , ad−1) for

a = (a1, . . . , ad).

Thus, we are to find the SH coefficients11 from the S ′(�)-convergent series

d−1∏
mk,nk=0

fmk,nk
=

∞∑
md,nd=0

{m | n}fmd,nd
. (A.2)

Proposition 12. The SH coefficients {m | n} for the product of d−1 special Hermite functions
are given by

{m | n} = (−1)|µ|δ|m|,|n|

√
µ!

M !

(
µd + δd

δd

)
2d−2

| �µ|∑
k=0

D
�δ
�µ(k)
(k + 1 + |δ|/2)

×
(

2

d

)k+1+|δ|/2

2F1(−µd, k + 1 + |δ|/2; δd + 1; 2/d) (A.3)

where

D
�δ
�µ(k) =

∑
|�j|=k

�δ1
µ1

(j1) · · · �δd−1
µd−1

(jd−1) (A.4)

with

�a
n(m) = (−1)m

(
n + a

n − m

)
1

m!
. (A.5)

The symbol 2F1 indicates the standard hypergeometric function.

Proof. The expression for fm,n in terms of Laguerre functions, given in equation (3.3c), can
be substituted into equation (A.1) for the SH coefficients. This yields

{m | n} = (−1)|µ|i|m|−|n|
√

µ!

M !
2d+ |δ|

2

∫ π

−π

ei(|n|−|m|)β dβ

2π

∫ ∞

0
e−dr2

r |δ|
d∏

k=1

Lδk

µk
(2r2)r dr

so integrating over the angle,

= (−1)|µ|δ|m|,|n|

√
µ!

M !
2d+ |δ|

2

∫ ∞

0
e−dr2

r |δ|
d∏

k=1

Lδk

µk
(2r2)r dr.

Now we make the substitution x = 2r2, to get

{m | n} = (−1)|µ|δ|m|,|n|

√
µ!

M !
2d−2

∫ ∞

0
e− d

2 xx
|δ|
2

d∏
k=1

Lδk

µk
(x) dx. (A.6)

The series for an associated Laguerre polynomial is (Grads̆teı̆n and Ryz̆ik [7], 8.970.2)

La
n(x) =

n∑
m=0

�a
n(m)xm (A.7)

11 The omission of a d-label should not cause any difficulties.
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where �a
n(m) is given in equation (A.5). Hence

d−1∏
r=1

Lδr

µr
(x) =

d−1∏
r=1

µr∑
jr=0

�δr

µr
(jr )x

jr

=
| �µ|∑
k=0

D
�δ
�µ(k)xk (A.8)

where Du
v (j) is defined in equation (A.4).

Substituting equation (A.8) into (A.6),

{m | n} = (−1)|µ|δ|m|,|n|

√
µ!

M !
2d−2

| �µ|∑
k=0

D
�δ
�µ(k)

∫ ∞

0
e− d

2 xxk+ |δ|
2 Lδd

µd
(x) dx. (A.9)

The integral is known (Grads̆teı̆n and Ryz̆ik [7] (7.414.7)):∫ ∞

0
e−sxxβLa

n(x) dx =
(

n + a

a

)

(β + 1)s−β−1

2F1

(
−n, β + 1; a + 1; 1

s

)
. (A.10)

The result is now immediate. �

Since the case d = 3 is our principal interest, and our solution depends essentially on the
D

�δ
�µ(k), we give two other forms for it.

Corollary 13. When d = 3,

D
�δ
�µ(k) = (−1)k

k!

k∑
j=0

(
k

j

)(
µ1 + δ1

µ1 − k + j

)(
µ2 + δ2

µ2 − j

)
(A.11a)

= (−1)k

k!

(
µ1 + δ1

µ1 − k

)(
µ2 + δ2

δ2

)
3F2(−k,−k − δ1,−µ2;µ1 − k + 1, δ2 + 1;−1).

(A.11b)

As d = 3, �µ = (µ1, µ2) and �δ = (δ1, δ2); in the usual Pochhammer notation, 3F2 is a Barnes
generalized hypergeometric function.

Proof. The first expression for D
�δ
�µ(k) follows from the binomial theorem. To obtain the

second expression, we proceed as follows. Write the first expression as

D
�δ
�µ(k) = (−1)k

k!

k∑
j=0

cj

so that (k, µ1, . . . , δ2 are fixed)

cj =
(

k

j

)(
µ1 + δ1

µ1 − k + j

)(
µ2 + δ2

δ2 + j

)
.

Now consider the ratio cj+1/cj ,

ρj+1,j = cj+1

cj

= − (j − k)(j − k − δ1)(j − µ2)

(j + µ1 − k + 1)(j + δ2 + 1)(j + 1)

which is of the form

x
(j + r1)(j + r2)(j + r3)

(j + s1)(j + s2)(j + 1)
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with

r1 = −k r2 = −k − δ1 r3 = −µ2 s1 = µ1 − k + 1 s2 = δ2 + 1 x = −1.

Solving for cj iteratively,

cj =
(

j−1∏
i=0

ρi+1,i

)
c0.

This is the general term of a (3, 2)-hypergeometric polynomial12,
k∑

j=0

cj = c0 3F2(r1, r2, r3; s1, s2; x)

with the parameters given above. As

c0 =
(

µ1 + δ1

µ1 − k

)(
µ2 + δ2

δ2

)
we obtain the result asserted. �

Corollary 14. All of the SH coefficients are nonzero. In particular,

{(0, 0,m) | (0, 0,m)} = 4
(− 1

3

)m+1
. (A.12)

This implies that for the square of the lowest indexed special Hermite function, the expansion
formula is the non-terminating series

f0,0(p, q)2 = 4
∞∑

m=0

(
−1

3

)m+1

fm,m(p, q). (A.13)

For the same reason, the pointwise product of any pair of special Hermite distributions,
Um1,n1Um2,n2 , will be a non-terminating series of Um3,n3 .

We note that the fact that f2
0,0 is a non-terminating series of the fm,m can be obtained by

inspection, as f2
0,0 = 4 exp(−2r2) and the exponential in fm,m is exp(−r2). However, this

argument does not provide the necessary series.
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